2.4. 加权最小连接调度
加权最小连接调度(Weighted Least-Connection Scheduling)算法是最小连接调度的超集,各个服务器用相应的权值表示其处理性能。服务器的缺省权值为1,系统管理员可以动态地设置服务器的权值。加权最小连接调度在调度新连接时尽可能使服务器的已建立连接数和其权值成比例。加权最小连接调度的算法流程如下:
加权最小连接调度的算法流程
假设有一组服务器S = {S0, S1, ..., Sn-1},W(Si)表示服务器Si的权值, C(Si)表示服务器Si的当前连接数。所有服务器当前连接数的总和为 CSUM = ΣC(Si) (i=0, 1, .. , n-1)。当前的新连接请求会被发送服务器Sm, 当且仅当服务器Sm满足以下条件 (C(Sm) / CSUM)/ W(Sm) = min { (C(Si) / CSUM) / W(Si)} (i=0, 1, . , n-1) 其中W(Si)不为零 因为CSUM在这一轮查找中是个常数,所以判断条件可以简化为 C(Sm) / W(Sm) = min { C(Si) / W(Si)} (i=0, 1, . , n-1) 其中W(Si)不为零 因为除法所需的CPU周期比乘法多,且在Linux内核中不允许浮点除法,服务器的 权值都大于零,所以判断条件C(Sm) / W(Sm) > C(Si) / W(Si) 可以进一步优化 为C(Sm)*W(Si) > C(Si)* W(Sm)。同时保证服务器的权值为零时,服务器不被调 度。所以,算法只要执行以下流程。 for (m = 0; m < n; m++) { if (W(Sm) > 0) { for (i = m+1; i < n; i++) { if (C(Sm)*W(Si) > C(Si)*W(Sm)) m = i; } return Sm; } } return NULL; |
基于局部性的最少链接调度(Locality-Based Least Connections Scheduling,以下简称为LBLC)算法是针对请求报文的目标IP地址的负载均衡调度,目前主要用于Cache集群系统,因为在Cache集群中客户请求报文的目标IP地址是变化的。这里假设任何后端服务器都可以处理任一请求,算法的设计目标是在服务器的负载基本平衡情况下,将相同目标IP地址的请求调度到同一台服务器,来提高各台服务器的访问局部性和主存Cache命中率,从而整个集群系统的处理能力。
LBLC调度算法先根据请求的目标IP地址找出该目标IP地址最近使用的服务器,若该服务器是可用的且没有超载,将请求发送到该服务器;若服务器不存在,或者该服务器超载且有服务器处于其一半的工作负载,则用“最少链接”的原则选出一个可用的服务器,将请求发送到该服务器。该算法的详细流程如下:
LBLC调度算法流程
假设有一组服务器S = {S0, S1, ..., Sn-1},W(Si)表示服务器Si的权值, C(Si)表示服务器Si的当前连接数。ServerNode[dest_ip]是一个关联变量,表示 目标IP地址所对应的服务器结点,一般来说它是通过Hash表实现的。WLC(S)表示 在集合S中的加权最小连接服务器,即前面的加权最小连接调度。Now为当前系统 时间。 if (ServerNode[dest_ip] is NULL) then { n = WLC(S); if (n is NULL) then return NULL; ServerNode[dest_ip].server = n; } else { n = ServerNode[dest_ip].server; if ((n is dead) OR (C(n) > W(n) AND there is a node m with C(m) < W(m)/2))) then { n = WLC(S); if (n is NULL) then return NULL; ServerNode[dest_ip].server = n; } } ServerNode[dest_ip].lastuse = Now; return n; |
2.6. 带复制的基于局部性最少链接调度
带复制的基于局部性最少链接调度(Locality-Based Least Connections with Replication Scheduling,以下简称为LBLCR)算法也是针对目标IP地址的负载均衡,目前主要用于Cache集群系统。它与LBLC算法的不同之处是它要维护从一个目标IP地址到一组服务器的映射,而LBLC算法维护从一个目标IP地址到一台服务器的映射。对于一个“热门”站点的服务请求,一台Cache服务器可能会忙不过来处理这些请求。这时,LBLC调度算法会从所有的Cache服务器中按“最小连接”原则选出一台Cache服务器,映射该“热门”站点到这台Cache服务器,很快这台Cache服务器也会超载,就会重复上述过程选出新的Cache服务器。这样,可能会导致该“热门”站点的映像会出现在所有的Cache服务器上,降低了Cache服务器的使用效率。LBLCR调度算法将“热门”站点映射到一组Cache服务器(服务器集合),当该“热门”站点的请求负载增加时,会增加集合里的Cache服务器,来处理不断增长的负载;当该“热门”站点的请求负载降低时,会减少集合里的Cache服务器数目。这样,该“热门”站点的映像不太可能出现在所有的Cache服务器上,从而提供Cache集群系统的使用效率。
LBLCR算法先根据请求的目标IP地址找出该目标IP地址对应的服务器组;按“最小连接”原则从该服务器组中选出一台服务器,若服务器没有超载,将请求发送到该服务器;若服务器超载;则按“最小连接”原则从整个集群中选出一台服务器,将该服务器加入到服务器组中,将请求发送到该服务器。同时,当该服务器组有一段时间没有被修改,将最忙的服务器从服务器组中删除,以降低复制的程度。LBLCR调度算法的流程如下:
LBLCR调度算法流程
假设有一组服务器S = {S0, S1, ..., Sn-1},W(Si)表示服务器Si的权值, C(Si)表示服务器Si的当前连接数。ServerSet[dest_ip]是一个关联变量,表示 目标IP地址所对应的服务器集合,一般来说它是通过Hash表实现的。WLC(S)表示 在集合S中的加权最小连接服务器,即前面的加权最小连接调度;WGC(S)表示在 集合S中的加权最大连接服务器。Now为当前系统时间,lastmod表示集合的最近 修改时间,T为对集合进行调整的设定时间。 if (ServerSet[dest_ip] is NULL) then { n = WLC(S); if (n is NULL) then return NULL; add n into ServerSet[dest_ip]; } else { n = WLC(ServerSet[dest_ip]); if ((n is NULL) OR (n is dead) OR (C(n) > W(n) AND there is a node m with C(m) < W(m)/2))) then { n = WLC(S); if (n is NULL) then return NULL; add n into ServerSet[dest_ip]; } else if (|ServerSet[dest_ip]| > 1 AND Now - ServerSet[dest_ip].lastmod > T) then { m = WGC(ServerSet[dest_ip]); remove m from ServerSet[dest_ip]; } } ServerSet[dest_ip].lastuse = Now; if (ServerSet[dest_ip] changed) then ServerSet[dest_ip].lastmod = Now; return n; |
2.7. 目标地址散列调度
目标地址散列调度(Destination Hashing Scheduling)算法也是针对目标IP地址的负载均衡,但它是一种静态映射算法,通过一个散列(Hash)函数将一个目标IP地址映射到一台服务器。
目标地址散列调度算法先根据请求的目标IP地址,作为散列键(Hash Key)从静态分配的散列表找出对应的服务器,若该服务器是可用的且未超载,将请求发送到该服务器,否则返回空。该算法的流程如下:
目标地址散列调度算法流程
假设有一组服务器S = {S0, S1, ..., Sn-1},W(Si)表示服务器Si的权值, C(Si)表示服务器Si的当前连接数。ServerNode[]是一个有256个桶(Bucket)的 Hash表,一般来说服务器的数目会运小于256,当然表的大小也是可以调整的。 算法的初始化是将所有服务器顺序、循环地放置到ServerNode表中。若服务器的 连接数目大于2倍的权值,则表示服务器已超载。 n = ServerNode[hashkey(dest_ip)]; if ((n is dead) OR (W(n) == 0) OR (C(n) > 2*W(n))) then return NULL; return n; |
素数乘法Hash函数
static inline unsigned hashkey(unsigned int dest_ip) { return (dest_ip* 2654435761UL) & HASH_TAB_MASK; } 其中,2654435761UL是2到2^32 (4294967296)间接近于黄金分割的素数, (sqrt(5) - 1) / 2 = 0.618033989 2654435761 / 4294967296 = 0.618033987 |
源地址散列调度(Source Hashing Scheduling)算法正好与目标地址散列调度算法相反,它根据请求的源IP地址,作为散列键(Hash Key)从静态分配的散列表找出对应的服务器,若该服务器是可用的且未超载,将请求发送到该服务器,否则返回空。它采用的散列函数与目标地址散列调度算法的相同。它的算法流程与目标地址散列调度算法的基本相似,除了将请求的目标IP地址换成请求的源IP地址,所以这里不一一叙述。
在实际应用中,源地址散列调度和目标地址散列调度可以结合使用在防火墙集群中,它们可以保证整个系统的唯一出入口。
.
分页: [1] [2] [3]
- 上一篇:三山区,芜湖市,安徽省
- 下一篇:芜湖县,芜湖市,安徽省