2) GNU Make 工具
2.1 基本 makefile 结构
GNU Make 的主要工作是读进一个文本文件, makefile 。这个文 件里主要是有关哪些 文件(‘target’目的文件)是从哪些别的 文件(‘dependencies’依靠文件)中产 生的,用什么命令来进行 这个产生过程。有了这些信息, make 会检查磁碟上的文件,如果 目的文件的时间戳(该文件生成或被改动时的时间)比至少它的一 个依靠文件旧的话, make 就执行相应的命令,以便更新目的文件。 (目的文件不一定是最后的可执行档,它可以是任何一个文件。) makefile 一般被叫做“makefile”或“Makefile”。当然你可以 在 make 的命令行指 定别的文件名。如果你不特别指定,它会寻 找“makefile”或“Makefile”,因此使用这两个名字是最简单 的。
一个 makefile 主要含有一系列的规则,如下:
例如,考虑以下的 makefile :
=== makefile 开始 ===
myprog : foo.o bar.o
gcc foo.o bar.o -o myprog
foo.o : foo.c foo.h bar.h
gcc -c foo.c -o foo.o
bar.o : bar.c bar.h
gcc -c bar.c -o bar.o
=== makefile 结束 ===
这是一个非常基本的 makefile —— make 从最上面开始,把上 面第一个目的, ‘myprog’,做为它的主要目标(一个它需要保 证其总是最新的最终目标)。给出的 规则说明只要文件‘myprog’ 比文件‘foo.o’或‘bar.o’中的任何一个旧,下一行的命令将 会被执行。但是,在检查文件 foo.o 和 bar.o 的时间戳之前,它会往下查 找那些把 foo.o 或 bar.o 做为目标文件的规则。它找到的关于 foo.o 的规则,该文件的依靠文件是 foo.c, foo.h 和 bar.h 。 它从下面再找不到生成这些依靠文件的规则,它就开始检 查磁碟 上这些依靠文件的时间戳。如果这些文件中任何一个的时间戳比 foo.o 的新, 命令 ‘gcc -o foo.o foo.c‘ 将会执行,从而更新 文件 foo.o 。 接下来对文件 bar.o 做类似的检查,依靠文件在这里是文件 bar.c 和 bar.h 。
现在, make 回到‘myprog’的规则。如果刚才两个规则中的任 何一个被执行, myprog 就需要重建(因为其中一个 .o 档就会比 ‘myprog’新),因此连接命令将被 执行。
希望到此,你可以看出使用 make 工具来建立程序的好处——前 一章中所有繁琐的检 查步骤都由 make 替你做了:检查时间戳。 你的源码文件里一个简单改变都会造成那 个文件被重新编译(因 为 .o 文件依靠.c 文件),进而可执行文件被重新连接(因 为 .o 文件被改变了)。其实真正的得益是在当你改变一个header 档的时候——你不 再需要记住那个源码文件依靠它,因为所有的 资料都在 makefile 里。 make 会很轻 松的替你重新编译所有那 些因依靠这个 header 文件而改变了的源码文件,如有需 要,再 进行重新连接。 当然,你要确定你在 makefile 中所写的规则是正确无误的,只 列出那些在源码文件 中被 #include 的header 档……
2.2 编写 make 规则 (Rules)
最明显的(也是最简单的)编写规则的方法是一个一个的查 看源码文件,把它们的目标文件做为目的,而C源码文件和被它 #include 的 header 档做为依靠文件。但是你 也要把其它被这些 header 档 #include 的header 档也列为依靠文件,还有那些被包括的文件所包括的文件……然后你会发现要对越来越多的文件 进行管理,然后你的头发开始脱落,你的脾气开始变坏,你的脸 色变成菜色,你走在路上开始跟电线杆子 碰撞,终于你捣毁你的 电脑显示器,停止编程。到低有没有些容易点儿的方法呢? 当然有!向编译器要!在编译每一个源码文件的时候,它实在应 该知道应该包括什么样的 header 档。使用 gcc 的时候,用 -M 开关,它会为每一个你给它的C文件输出一个规则,把目标文件 做为目的,而这个C文件和所有应该被 #include 的header 文 件将做为依靠文件。注意这个规则会加入所有 header 文件,包 括被角括号(`<‘, `>‘)和双引号(`"‘)所包围的文件。其实我们可以 相当肯定系统 header 档(比如 stdio.h, stdlib.h 等等)不会 被我们更改,如果你用 -MM 来代替 -M 传递给 gcc, 那些用角括 号包围的 header 档将不会被包括。
(这会节省一些编译时间) 由 gcc 输出的规则不会含有命令部分;你可以自己写入你的命令 或者什么也不写,而 让 make 使用它的隐含的规则(参考下面的 2.4 节)。
2.3 Makefile 变量
上面提到 makefiles 里主要包含一些规则。它们包含的其它的东 西是变量定义。 makefile 里的变量就像一个环境变量(environment variable)。 事实上,环境变量在 make 过程中被解释成 make 的变量。这些 变量是大小写敏感的,一般使用大写字母。 它们可以从几乎任何 地方被引用,也可以被用来做很多事情,比如:
i) 贮存一个文件名列表。在上面的例子里,生成可执行文件的 规则包含一些目标文件 名做为依靠。在这个规则的命令行 里同样的那些文件被输送给 gcc 做为命令参数。如果在这 里使用一个变数来贮存所有的目标文件名,加入新的目标 文件会变的简单而且较不易出错。
ii) 贮存可执行文件名。如果你的项目被用在一个非 gcc 的系 统里,或者如果你想使用一个不同的编译器,你必须将所 有使用编译器的地方改成用新的编译器名。但是如 果使用一 个变量来代替编译器名,那么你只需要改变一个地方,其 它所有地方的命令名就都改变了。
iii) 贮存编译器旗标。假设你想给你所有的编译命令传递一组 相同的选项(例 -Wall -O -g);如果你把这组选项存 入一个变量,那么你可以把这个变量放在所有 呼叫编译器 的地方。而当你要改变选项的时候,你只需在一个地方改 变这个变量的内 容。要设定一个变量,你只要在一行的开始写下这个变量的名字,后 面跟一个 = 号,后面 跟你要设定的这个变量的值。以后你要引用 这个变量,写一个 $ 符号,后面是围在括 号里的变量名。比如在 下面,我们把前面的 makefile 利用变量重写一遍:
=== makefile 开始 ===
OBJS = foo.o bar.o
CC = gcc
CFLAGS = -Wall -O -g
myprog : $(OBJS)
$(CC) $(OBJS) -o myprog
foo.o : foo.c foo.h bar.h
$(CC) $(CFLAGS) -c foo.c -o foo.o
bar.o : bar.c bar.h
$(CC) $(CFLAGS) -c bar.c -o bar.o
=== makefile 结束 ===
还有一些设定好的内部变量,它们根据每一个规则内容定义。三个 比较有用的变量是$@, $< 和 $^ (这些变量不需要括号括住)。 $@ 扩展成当前规则的目的文件名, $< 扩展成依靠列表中的第 一个依靠文件,而 $^ 扩展成整个依靠的列表(除掉了里面所有重 复的文件名)。利用这些变量,我们可以把上面的 makefile 写成:
=== makefile 开始 ===
OBJS = foo.o bar.o
CC = gcc
CFLAGS = -Wall -O -g
myprog : $(OBJS)
$(CC) $^ -o $@
foo.o : foo.c foo.h bar.h
$(CC) $(CFLAGS) -c $< -o $@
bar.o : bar.c bar.h
$(CC) $(CFLAGS) -c $< -o $@
=== makefile 结束 ===
你可以用变量做许多其它的事情,特别是当你把它们和函数混合 使用的时候。如果需 要更进一步的了解,请参考 GNU Make 手册。 (‘man make‘, ‘man makefile‘)
2.4 隐含规则 (Implicit Rules)
请注意,在上面的例子里,几个产生 .o 文件的命令都是一样的。 都是从 .c 文件和 相关文件里产生 .o 文件,这是一个标准的步 骤。其实 make 已经知道怎么做——它 有一些叫做隐含规则的内 置的规则,这些规则告诉它当你没有给出某些命令的时候, 应该 怎么办。如果你把生成 foo.o 和 bar.o 的命令从它们的规则中删除, make 将会查找它的隐含 规则,然后会找到一个适当的命令。它的命令会 使用一些变量,因此你可以按照你的 想法来设定它:它使用变量 CC 做为编译器(象我们在前面的例子),并且传递变量 CFLAGS (给 C 编译器,C++ 编译器用 CXXFLAGS ),CPPFLAGS ( C 预 处理器旗 标), TARGET_ARCH (现在不用考虑这个),然后它加 入旗标 ‘-c‘ ,后面跟变量 $< (第一个依靠名),然后是旗 标 ‘-o‘ 跟变量 $@ (目的文件名)。
一个C编译的 具体命令将 会是:$(CC) $(CFLAGS) $(CPPFLAGS) $(TARGET_ARCH) -c $< -o $@ 当然你可以按照你自己的需要来定义这些变量。这就是为什么用 gcc 的 -M 或 -MM 开 关输出的码可以直接用在一个makefile 里。 2.5 假象目的 (Phony Targets) 假设你的一个项目最后需要产生两个可执行文件。你的主要目标 是产生两个可执行文 件,但这两个文件是相互独立的——如果一 个文件需要重建,并不影响另一个。你可以使用“假象目的”来 达到这种效果。一个假象目的跟一个正常的目的几乎是一样 的, 只是这个目的文件是不存在的。因此, make 总是会假设它需要 被生成,当把它 的依赖文件更新后,就会执行它的规则里的命令行。 如果在我们的 makefile 开始处输入:
all : exec1 exec2 其中 exec1 和 exec2 是我们做为目的的两个可执行文件。 make 把这个 ‘all‘ 做为 它的主要目的,每次执行时都会尝试把 ‘all‘ 更新。但既然这行规则里没有哪个命令来作用在一个叫 ‘all‘ 的实际文件(事实上 all 并不会在磁碟上实际产生),所以 这个规 则并不真的改变 ‘all‘ 的状态。可既然这个文件并不存在,所以 make 会尝试 更新 all 规则,因此就检查它的依靠 exec1, exec2 是否需要更新,如果需要,就把 它们更新,从而达到我们的目的。 假象目的也可以用来描述一组非预设的动作。例如,你想把所有由 make 产生的文件删 除,你可以在 makefile 里设立这样一个规则:
veryclean :
rm *.o
rm myprog
前提是没有其它的规则依靠这个 ‘veryclean‘ 目的,它将永远 不会被执行。但是,如果你明确的使用命令‘make veryclean‘ , make 会把这个目的做为它的主要目标,执行那些 rm 命令。如果你的磁碟上存在一个叫veryclean 文件,会发生什么事?这 时因为在这个规则里 没有任何依靠文件,所以这个目的文件一定是 最新的了(所有的依靠文件都已经是最 新的了),所以既使用户明 确命令 make 重新产生它,也不会有任何事情发生。解决 方法是标 明所有的假象目的(用 .PHONY),这就告诉 make 不用检查它们 是否存在 于磁碟上,也不用查找任何隐含规则,直接假设指定的目 的需要被更新。在 makefile 里加入下面这行包含上面规则的规则:
..PHONY : veryclean
就可以了。注意,这是一个特殊的 make 规则,make 知道 .PHONY 是一个特殊目的, 当然你可以在它的依靠里加入你想用的任何假象 目的,而 make 知道它们都是假象目 的。
.分页: [1] [2] [3] [4]
TAG: freebsd makefile